
Exceptions in Python
Exception causes the code to stop if there is an error, for example if you input a string for
what is supposed to be an integer, it will show “ValueError” as followed.

a = int(input())

print(a)

HelloWorld

Traceback (most recent call last):

File "d:\LSC\Teams\Computer Team\testing.py", line 1, in <module>

a = int(input())

ValueError: invalid literal for int() with base 10: 'HelloWorld'

Prevention:

Try and except branch can help

try:

 a = int(input())

 print(a)

except:

 print("this is not an integer")

Once an error occurred in the try branch, it will go to the except branch, the terminal
doesn’t show any error.

Either of those is executed successfully, the program continues.

We can also specify the error

try:

 a = float(input())

 print(1 / a)

except ValueError:

 print("Please input a number")

except ZeroDivisionError:

 print("Please input a non-zero number")

Still like if-elif branch you can add except at the end

try:

 a = float(input())

 print(1 / a)

except ValueError:

 print("Please input a number")

except ZeroDivisionError:

 print("Please input a non-zero number")

except:

 print("Something unexpected happened")

Normal errors

short_list = [1]

short_list = [1]

short_list.append(2)

short_list.depend(3) # AttributeError

short_list = [1]

one_value = short_list[0.5] # TypeError

print(1 / 0) # ZeroDivisionError

s = "abc"

a = int(s) # ValueError

SyntaxError

You can also use the 𝑟𝑎𝑖𝑠𝑒 keyword to raise specified exception.

def func ():

 raise ZeroDivisionError

try:

 func()

except ArithmeticError:

 print("Hello there") # executed

Another keyword worth mentioning is 𝑎𝑠𝑠𝑒𝑟𝑡. It evaluates the expression, if it’s 𝑇𝑟𝑢𝑒, or a
non-zero numerical value, or a non-empty string, or any other value different than 𝑁𝑜𝑛𝑒, it
won’t do anything else. Otherwise, it automatically and immediately raises an exception
name 𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟. (We say that the assertion has failed)

assert expression

This can make your code absolutely safe from evidently wrong data, and clearly shows the
nature of the failure. They also don’t supersede exceptions or validate the data.

Exception 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡.

Location: 𝐵𝑎𝑠𝑒𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 <- 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡.

A exception raised when the user used a keyboard shortcut designed to terminate a

program’s execution (Control-C in most OSs).

Python 3 defines 63 built-in exceptions, and all of them form a tree-shaped hierarchy.

Source: Cisco/Python Institute

List of exceptions worth noting:

• 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝐸𝑟𝑟𝑜𝑟 (Abstract built-in Python exception)

• 𝐵𝑎𝑠𝑒𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 (Abstract built-in Python exception)

• 𝐿𝑜𝑜𝑘𝑢𝑝𝐸𝑟𝑟𝑜𝑟 (Abstract built-in Python exception)

• 𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

• 𝐼𝑚𝑝𝑜𝑟𝑡𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

• 𝐼𝑛𝑑𝑒𝑥𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

• 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 (Concrete built-in Python exception)

• 𝐾𝑒𝑦𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

• 𝑀𝑒𝑚𝑜𝑟𝑦𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

• 𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝐸𝑟𝑟𝑜𝑟 (Concrete built-in Python exception)

