Modules in Python
Aka libraries in C++.

The build-in module is “Python standard library”. Just like libraries in C++, there exists a LOT
of modules in Python, much more than C++.

math
Sys
and the code below is identical to the one above

Built-in
namespace

Namespace (Namespace - Wikipedia):

Global
namespace

A namespace is a space (understood in a non-physical context) in
which some names exist and the names don’t conflict with each

Local
namespace

other. Inside each namespace, each name must remain unique. If
the module is valid (exists and accessible), Python imports its
contents, all the names defined in the module become known, but
they don’t enter the code’s namespace.

Type of Namespaces

Photo: Geeks for geeks

This program shows that two namespaces (local and math module) can coexist.
math

pi = 3.14

print(math.pi)

print(pi)

This imports the name / list (if there are more than one argument) into the namespace. The
names of the imported entities are accessible without qualification.

math pi
print(pi)
Multiple names imported

math sin, pi
print(sin(pi / 2))
The imported names supersede the local ones.
pi = 3.14
sin(x):
2 * x == pi:
0.99999999

print(sin(pi / 2))

math sin, pi
print(sin(pi / 2))



https://en.wikipedia.org/wiki/Namespace

This imports all entities from the indicated module

This may not be able to avoid name conflicts

Import a module: the “as” keyword (it can be anything you’d like)
math sth
print(sth.pi)
However, after successful execution of an aliased import, the original module name
becomes inaccessible and must not be used.

from module import name as
math pi

print(sine(PI/2))

WAIHTTTIT,
does this also mean that | can import from my own codes?
YES!!
testing 2 hello world
hello world(2)

Where testing_2.py is created within the same directory, its program is as followed.
hello world (n: int):
i range(n):
print("Hello World")
We will dig deeper into this in “Packages in Python”.

The dir() function
This function returns an alphabetically sorted list containing all the entities’ names in the
module.
math
name dir(math):
print(name,

Math module was briefly introduced before, another one worth

mentioning is random

It delivers some mechanisms allowing people to operate with pseudorandom numbers,
pseudo- means fake.

So, how are “random” numbers generated? They are all calculated using very refined
algorithms, they are deterministic and predictable.



A random number generator tasks a value “seed”, calculates the next “random” value and
replace it as the “seed” value.
So, this is a cycle after all? The answer is positive, but it may be very long.
But how is the initial “seed” value decided? It is augmented by setting the seed with a
number taken from the current time.
#include <bits/stdc++.h>

std;

main () {

srand(time( ));
cout << << "\n";
cout << rand() << '\n';

Here is a simple C++ sample of random number generator, the 4™ line resets the seed value
(as C++ doesn’t reset it automatically).

The seed() function allows the programmer to reset the seed, either to an integer value, or
to the current time.
random random, seed
seed(9)
seed()
i range(5):
print(random())

Random integers (right-sided exclusion)
random randrange, randint
print(randrange(5),
print(randrange(9, 1),
print(randrange(@, 5, 2),
print(randint(e, 1))

What about choosing from a list?

random choice, sample
my list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
print(choice(my_ list))

print(sample(my list, 5))

print(sample(my_list, 10))

Obviously, as the sample() and choice() functions work on random algorithms, the printed
result may not be the same.



Unrelated to Python:
Location of the programme.

Hardware

Platform module

platform platform

Platform, it lets the user access the underlying platform’s data, as described above,
hardware, operating system, and interpreter version information.

The platform() function within the platform module returns a string describing the
environment, its output is addresses to humans rather than automated processing.
Aliased, when set to True, it may cause the function to present the alternative underlying
layer names instead of the common ones.
Terse, when set to True, it may convince the function to present a briefer from of the result,
if possible (like in the case below)

platform platform
print(platform())
print(platform( ))
print(platform(
print(platform(
Sometimes Terse is not possible, like the case below

platform platform
print(platform())
print(platform( ))

print(platform( ))

print(platform( ))

The machine() function returns a string about the generic name of the processor which runs
you OS together with Python.



platform machine
print(machine())
It differs by machines

platform machine

print(machine())

The processor() function returns a string about the real processor name (if possible)
platform processor
print(processor())

The system() function returns a string about the operating system

platform system
print(system())

platform system
print(system())

The version() function returns the OS version
platform version
print(version())

platform version

print(version())

The python_implementation() and python_version_tuple() functions. The former one
returns a string of the Python implementation (expect “CPython” here). The later one
returns a three-element tuple, the major part of Python’s version, the minor part and the
patch level number
platform python_implementation, python_version_tuple
print(python_implementation())
atr python version tuple():

print(atr)




You can read about all the standard Python modules here:
Python Module Index — Python 3.10.4 documentation



https://docs.python.org/3/py-modindex.html

