
Modules in Python
Aka libraries in C++.

The build-in module is “Python standard library”. Just like libraries in C++, there exists a LOT

of modules in Python, much more than C++.

import math

import sys # https://docs.python.org/3/library/sys.html
and the code below is identical to the one above

import math, sys

Namespace (Namespace - Wikipedia):

A namespace is a space (understood in a non-physical context) in

which some names exist and the names don’t conflict with each

other. Inside each namespace, each name must remain unique. If

the module is valid (exists and accessible), Python imports its

contents, all the names defined in the module become known, but

they don’t enter the code’s namespace.

Photo: Geeks for geeks

This program shows that two namespaces (local and math module) can coexist.

import math

pi = 3.14

print(math.pi) # this is pi from the math module

print(pi) # this is local variable pi

output:

3.141592653589793

3.14
This imports the name / list (if there are more than one argument) into the namespace. The
names of the imported entities are accessible without qualification.

from math import pi

print(pi) # 3.141592653589793
Multiple names imported

from math import sin, pi

print(sin(pi / 2)) # 1.0
The imported names supersede the local ones.

pi = 3.14

def sin(x):

 if 2 * x == pi:

 return 0.99999999

 else:

 return None

print(sin(pi / 2)) # local variables and functions, output: 0.99999999

from math import sin, pi

print(sin(pi / 2)) # imported names, output: 1.0

https://en.wikipedia.org/wiki/Namespace

This imports all entities from the indicated module

from math import *

This may not be able to avoid name conflicts

Import a module: the “as” keyword (it can be anything you’d like)

import math as sth

print(sth.pi) # 3.141592653589793

However, after successful execution of an aliased import, the original module name

becomes inaccessible and must not be used.

from module import name as

from math import pi as PI, sin as sine

print(sine(PI/2)) # 1.0

WAIIIIIIIIIIIIIIT,

does this also mean that I can import from my own codes?

YES!!

from testing_2 import hello_world

hello_world(2)

Hello World

Hello World

Where testing_2.py is created within the same directory, its program is as followed.

def hello_world (n: int):

 for i in range(n):

 print("Hello World")

We will dig deeper into this in “Packages in Python”.

The dir() function

This function returns an alphabetically sorted list containing all the entities’ names in the

module.

import math

for name in dir(math):

 print(name, end = " ")

__doc__ __loader__ __name__ __package__ __spec__ acos acosh

asin asinh atan atan2 atanh ceil comb copysign cos cosh

degrees dist e erf erfc exp expm1 fabs factorial floor

fmod frexp fsum gamma gcd hypot inf isclose isfinite

isinf isnan isqrt lcm ldexp lgamma log log10 log1p

log2 modf nan nextafter perm pi pow prod radians

remainder sin sinh sqrt tan tanh tau trunc ulp

Math module was briefly introduced before, another one worth
mentioning is random
It delivers some mechanisms allowing people to operate with pseudorandom numbers,

pseudo- means fake.

So, how are “random” numbers generated? They are all calculated using very refined

algorithms, they are deterministic and predictable.

A random number generator tasks a value “seed”, calculates the next “random” value and

replace it as the “seed” value.

So, this is a cycle after all? The answer is positive, but it may be very long.

But how is the initial “seed” value decided? It is augmented by setting the seed with a

number taken from the current time.

#include <bits/stdc++.h>

using namespace std;

int main () {

 srand(time(NULL));

 cout << RAND_MAX << "\n";

 cout << rand() << '\n';

}

Here is a simple C++ sample of random number generator, the 4th line resets the seed value

(as C++ doesn’t reset it automatically).

The seed() function allows the programmer to reset the seed, either to an integer value, or

to the current time.

from random import random, seed

seed(0) # sets seed to 0

seed() # sets seed to current time

for i in range(5):

 print(random())

Random integers (right-sided exclusion)

from random import randrange, randint

print(randrange(5), end=' ') # randrange(end)

print(randrange(0, 1), end=' ') # randrange(begin, end)

print(randrange(0, 5, 2), end=' ') # randrange(begin, end, step)

print(randint(0, 1)) # randint(left, right)

What about choosing from a list?

from random import choice, sample

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

print(choice(my_list)) # choose a random element

output: 7

print(sample(my_list, 5)) # choose 5 elements randomly

output: [5, 2, 3, 9, 10]

print(sample(my_list, 10)) # choose 10, all

output: [6, 9, 3, 4, 2, 10, 7, 1, 8, 5]

samples may not be sorted

Obviously, as the sample() and choice() functions work on random algorithms, the printed

result may not be the same.

Unrelated to Python:

Location of the programme.

Platform module
from platform import platform

Platform, it lets the user access the underlying platform’s data, as described above,

hardware, operating system, and interpreter version information.

The platform() function within the platform module returns a string describing the

environment, its output is addresses to humans rather than automated processing.

platform(aliased = False, terse = False)

Aliased, when set to True, it may cause the function to present the alternative underlying

layer names instead of the common ones.

Terse, when set to True, it may convince the function to present a briefer from of the result,

if possible (like in the case below)

from platform import platform

print(platform()) # Windows-10-10.0.19043-SP0

print(platform(False, True)) # Windows-10

print(platform(True, False)) # Windows-10-10.0.19043-SP0

print(platform(True, True)) # Windows-10

Sometimes Terse is not possible, like the case below

from platform import platform

print(platform()) # Linux-5.13.0-1017-aws-x86_64-with-glibc2.29

print(platform(False, True)) # Linux-5.13.0-1017-aws-x86_64-with-

glibc2.29

print(platform(True, False)) # Linux-5.13.0-1017-aws-x86_64-with-

glibc2.29

print(platform(True, True)) # Linux-5.13.0-1017-aws-x86_64-with-

glibc2.29

The machine() function returns a string about the generic name of the processor which runs

you OS together with Python.

from platform import machine

print(machine()) # AMD64

It differs by machines

from platform import machine

print(machine()) # x86_64

The processor() function returns a string about the real processor name (if possible)

from platform import processor

print(processor()) # Intel64 Family 6 Model 158 Stepping 11,

GenuineIntel

The system() function returns a string about the operating system

from platform import system

print(system()) # Linux

from platform import system

print(system()) # Windows

The version() function returns the OS version

from platform import version

print(version()) # #242-Ubuntu SMP Fri Apr 16 09:57:56 UTC 2021

from platform import version

print(version()) # 10.0.19043

The python_implementation() and python_version_tuple() functions. The former one

returns a string of the Python implementation (expect “CPython” here). The later one

returns a three-element tuple, the major part of Python’s version, the minor part and the

patch level number

from platform import python_implementation, python_version_tuple

print(python_implementation()) # Cpython

for atr in python_version_tuple():

 print(atr)

3

7

10

You can read about all the standard Python modules here:

Python Module Index — Python 3.10.4 documentation

https://docs.python.org/3/py-modindex.html

