Python Package Installer (PIP)
Python was created as open-source software, and this also works as an invitation for all coders to maintain the whole Python ecosystem as an open, friendly and free environment. To make this happen, some tools to help creators to publish, maintain and take care of their code need to be provided.
Two basic entities have to be established and kept in action, a centralized repository for all available software packages, and a tool allowing users to access the repository.

PyPI
What is the repository then? Its named PyPI (short for Python Package Index), it is maintained by a workgroup named Packaging Working Group, a part of the Python Software Foundation, whose main task is to support Python developers in efficient code dissemination. Here is their website: PackagingWG - PSF Wiki (python.org).
You can find the PyPI website here at PyPI · The Python Package Index.
Until now (1/4/2022 AND THIS IS NOT AN APRIL FOOL’S JOKE), there are 366897 projects, consisting 5836784 files managed by 582865 users. These three numbers clearly show the potency if the Python community and the importance of developer cooperation.
Keep in mind that PyPI is not the only existing Python repository, there are a lot of them, but for sure PyPI is the most important one. Its likely that someday you and your colleagues may want to create your own repository.

PIP
PyPI is completely free, meaning that you can just pick a code and use it. There are a lot of software inside and is available 24/7.
There is a specific tool you’ll need to use what PyPI offers, and that is named pip, which of course, is an acronym, but its more complex than the previously mentioned PyPI.
Why? pip means “pip installs packages” and the pip inside “pip installs packages” means “pip installs packages” and so on, ITS AN INFINITE RECURSION!!! (It’s called recursive acronyms if you’d like to know)
Off-topic fun fact: Another famous recursive acronym is Linux, which can be interpreted as “Linux is Not Unix”.
How to get pip ready? You may ask. Some Python installations comes with pip, some don’t. It doesn’t only depend on the OS you use, although this is a very important factor.

Microsoft Windows
The MS Windows Python installer already contains pip, and so no other steps are needed to install it. Unfortunately, if the PATH variable I misconfigured, pip may be unavailable.
To check whether your pip is running fine, try this
1. Open a windows console (Command Prompt or PowerShell, whatever you’d like)
2. Type and execute (press ENTER) the following command: pip --version.
3. In the optimal situation you’ll get this.
[image:]
Yellow words are names subject to the change by the name of the user and file location.
Red words are subject to change due to the version of your Python and pip.
If the response is absent, this may mean the PATH variable either incorrectly points to the location of the Python binaries, or doesn’t point at all.
The easiest way to reconfigure the PATH variable is to reinstall Python.

Linux
Different Linux distributions may behave differently when it comes to using pip. Some of them (for example Gentoo) closely bound to Python may use it internally, may have pip already preinstalled and are instantly ready to work for you.
Some distributions of Linux may have both Python 2 and Python 3 coexisting, such systems may launch Python 2 as the default version. In this case, there may be two different pips identified as pip (or pip2) and pip3.
In such case typing pip --version summons the pip from Python 2, typing pip3 –version can check the version of pip3.

In some other cases (like some versions of Ubuntu), they don’t have pip preinstalled for you. You have two possibilities.
1. Install pip as a system package using a dedicated package manager
2. Install pip using internal Python mechanisms.
I recommend using the first choice, type the following command.
sudo apt install python3-pip

MacOS
You’ve installed pip is you used the brew installer, check by the command:
pip3 –version
Now we’ve got pip ready, so I am going to limit the focus to Microsoft Windows only, as its behaviours (should be) the same in all OSs.

Dependencies
[image:]Dependency is a phenomenon that appears every time you’re going to use a piece of software that relies on other software, this may include more than 1 level of software development.
Here is an example of dependency, let’s say you’ve created a Python application called Premier League, able to predict future Premier League results with 99% (if you actually do that, please contact me IMMEDIATELY). You’ve used some existing code to achieve that (for example TensorFlow for Machine Learning). Does this mean that a potential package user is obliged to trace all dependencies and manually install all the needed packages? That would be horrible, wouldn’t it?
Definitely yes, don’t be surprised that this has its own name called “dependency hell”.
But how do we deal with that? Is everyone just doomed to visited “hell” in order to run the code?
Fortunately, pip can do all these for us, it can discover, identify and resolve all dependencies. Moreover, it can do it optimally, meaning that it can avoid any unnecessary downloads and reinstalls.

How to use pip
Help
Type the following command in Command Prompt or PowerShell.
[image:]pip help
You should’ve got this long list of commands; how do we specify the listed operations?
[image:]Type this in the Command Prompt / PowerShell
pip help operation
Where operation is yet to be specified.
For example, we type
pip help install
This will show you the detailed information about using and parameterizing the install command (and yes, the list is even longer).

List
If you would like to have a glance at all the Python packages you’ve installed so far, you can use the list function, like this:
pip list
At the right side is a part of the list I’ve got, what you’ve got is totally up to do. However, for sure you will see two lines on the list: pip and setuptools. This happens because the OS is convinced that a user wanting pip will very likely need the setuptools soon, and it’s not wrong.

Show
The pip list isn’t very informative, and it may not satisfy your curiosity. There is a command that can tell you more about any of the installed packages.
pip show package_name
An example will be
pip show pip
[image:]
This is what you should’ve get.
You may ask where this data comes from? The information appearing on the prompt is taken from inside the package being shown. In other words, the package’s creator is obliged to equip it with all the needed data (or more precisely, metadata).

The power of pip comes from the fact that it’s actually a gateway to the Python software universe. You can browse and install any of the thousand’s projects and packages in the PyPI repositories. Keep in mind that pip does not store all PyPI content locally in your computer as it is unnecessary and uneconomical.
So how does it work? Pip uses the internet to query PyPI and to download the requested data.

Search
One example of this is when you want to search through PyPI. The command would be:
pip search any_string
The any_string parameter provided by the user (you) will be searched on the names of all the packages and the summary strings of all the packages.
There might be a LOT of found results, so try to be as specific as possible. For example:
pip search pip
This produces more than 100 lines of results.
If you’re not a fan of console reading, you can use this link to search: Search results · PyPI

Install
Assuming now you’ve found your targeted package and wants to install it onto your computer.
The command would simply be:
pip install package_name
By default, this will install the package system-wide, if you’re not using those or don’t want to install the package system-wide, you can install for yourself only using the command:
pip install --user package_name

Pip will show a textual animation of the installation progress, after finishing, you can use:
pip show package_name
and
pip list
to get more information about what just happened.

Now the package you just installed is fully accessible, a simple
import
would’ve done the job.

Update
pip install
has two important additional abilities:
1. Update a locally installed package
Command:
pip install -U package_name
2. Install a user-specified version of a package (it installs the newest available version by default)
Command:
pip install package_name==package_version
Note the double equal sign.

Uninstall
Let’s say you no longer need a package and decided to get rid of it. The pip command uninstall can help too! It will execute all the needed steps. Command:
pip uninstall package_name
Pip will want to know if you’re sure about the choice you’re making
Proceed (y/n)?
‘y’ stands for Yes and ‘n’ stands for No.
The user (you) has to type either ‘y’ or ‘n’ to complete the process.

Key notes
1. A repository us designed to collect and share free Python code exists and works under the name Python Package Index (PyPI), the website: https://pypi.org/
2. A specialized tool has been created and its name is pip (pip installs packages…) As pip may not be deployed as a part of standard Python installation, it is possible that you will have to install manually. Pip is a console tool.
3. Commands to check pip’s version
pip --version
or
pip3 --version
4. The list of main pip activities/commands looks as follows.
pip help operation
pip list
pip show package_name
pip search any_string
pip install package_name
pip install --user package_name
pip install -U package_name
pip uninstall package_name
Explanation of all these commands can be found above.
image4.png
Version

Package
abs1-py
astunparse
async-generator
attrs
cachetools 5.
certifi 2021.10.8
cffi 15.0
charset-normalizer
colorana

cryptography

cycler

flatbuffers

fonttools

gast

google-auth
google-auth-oauthlib
zoogle-pasta

zrpcio

hil

hSpy

idna

keras
Keras-Preprocessing
kivisolver

libclang

Harkdown

matplotlib

nunpy

oauthlib

opency-python
opt-einsun

outcone

packaging

Pillow

pip

protobuf

pyasnl

pyasnl-nodules
pycparser

pyOpensSL

pyparsing

PySocks

python-datentil
requests
requests-oauthlib

ra

seleniun

setuptools

six

sniffio
sortedcontainers
tensorboard
tensorboard-data-server
tensorboard-plugin-wit
tensorf lov
tensorflov-io-ges-filesysten
terncolor
tf-estinator-nightly
trio

trio-vebsocket

.dev2021122109

image5.png
Name: pip

Version: 22.0.4

Sumnary: The PyPA recommended tool for installing Python packages.

Home-page: https://pip.pypa.io/

duthor: The pip developers

Author-email: distutils-sig@ython.org

License: HIT

Location: c:husersh Ypython31041ibisite-packages
Requires:

Required-by:

image1.png
C:\Users\user>pip --version
pip 21.2.4 from C:\program files\Python3xx\lib\site-packages\pip (python 3.10)

image2.png
Other Expected goall
functions /ll-enerator

variables

image3.png
Usage:
pip <comnand> [options]

Connands :
install Install packages.
download Download packages.
uninstall Uninstall packages.
freeze Output installed packages in requirements format.
list List installed packages.
show Show information about installed packages.
check Verify installed packages have compatible dependencies.
config Manage local and global configuration.
search Search PyPl for packagzes.
cache Inspect and manage pip's wheel cache.
index Inspect information available from packaze indexes.
vheel Build wheels from your requirements.
hash Compute hashes of package archives.
completion 4 helper command used for command completion.
debug Show information useful for debugzing.
help Show help for commands.
General Options:
-h, --help Show help.
--isolated Run pip in an isolated mode, ignoring environment variables and user configuration.
-¥, --verbose Give more output. Option is additive, and can be used up to 3 times.
-V, --version Show version and exit.
-q, --quiet Give less output. Option is additive, and can be used up to 3 times (corresponding to WARNING, ERROR, and CRITICAL logeing levels).
--log <path> Path to a verbose appending log.
--no-input Disable prompting for input.
--DIOXy <proxy> Specify a proxy in the form [user:passvd@]proxy.server:port.
--retries <retriess Maximum number of retries each comnection should attempt (default 5 times).
--timeout <secs Set the socket timeout (default 15 seconds),

--exists-action <action> Default action when a path already exists: (s)witch, (i)enore, (w)ipe, (b)ackup, (a)bort.
--trusted-host <hostname> Mark this host or host:port pair as trusted, even though it does not have valid or any HITPS.

--cert <paths Path to PEM-encoded CA certificate bundle. If provided, overrides the default. See 'SSL Certificate Verification' in pip documentation for more information.
--client-cert <path> Path to SSL client certificate, a single file containing the private key and the certificate in PEM format.

--cache-dir «dir> Store the cache data in «dirs.

--no-cache-dir Disable the cache.

--disable-pip-version-check
Don't periodically check PyPI to determine whether a new version of pip is available for download. Implied with --no-index.
--no-color Suppress colored output.
--no-python-version-varning
Silence deprecation warnings for upcoming unsupported Pythons.
--use-feature <feature> Enable new functionality, that may be backward incompatible.
--use-deprecated <feature> Enable deprecated functionality, that will be removed in the future.

