
Python Package Installer (PIP)
Python was created as open-source software, and this also works as an invitation for all
coders to maintain the whole Python ecosystem as an open, friendly and free environment.
To make this happen, some tools to help creators to publish, maintain and take care of their
code need to be provided.

Two basic entities have to be established and kept in action, a centralized repository for all
available software packages, and a tool allowing users to access the repository.

PyPI
What is the repository then? Its named PyPI (short for Python Package Index), it is
maintained by a workgroup named Packaging Working Group, a part of the Python Software
Foundation, whose main task is to support Python developers in efficient code
dissemination. Here is their website: PackagingWG - PSF Wiki (python.org).

You can find the PyPI website here at PyPI · The Python Package Index.

Until now (1/4/2022 AND THIS IS NOT AN APRIL FOOL’S JOKE), there are 366897 projects,
consisting 5836784 files managed by 582865 users. These three numbers clearly show the
potency if the Python community and the importance of developer cooperation.

Keep in mind that PyPI is not the only existing Python repository, there are a lot of them, but
for sure PyPI is the most important one. Its likely that someday you and your colleagues may
want to create your own repository.

PIP
PyPI is completely free, meaning that you can just pick a code and use it. There are a lot of
software inside and is available 24/7.

There is a specific tool you’ll need to use what PyPI offers, and that is named pip, which of
course, is an acronym, but its more complex than the previously mentioned PyPI.

Why? pip means “pip installs packages” and the pip inside “pip installs packages” means “pip
installs packages” and so on, ITS AN INFINITE RECURSION!!! (It’s called recursive acronyms if
you’d like to know)

Off-topic fun fact: Another famous recursive acronym is Linux, which can be interpreted as
“Linux is Not Unix”.

How to get pip ready? You may ask. Some Python installations comes with pip, some don’t.
It doesn’t only depend on the OS you use, although this is a very important factor.

Microsoft Windows

The MS Windows Python installer already contains pip, and so no other steps are needed to
install it. Unfortunately, if the PATH variable I misconfigured, pip may be unavailable.

To check whether your pip is running fine, try this

1. Open a windows console (Command Prompt or PowerShell, whatever you’d like)
2. Type and execute (press ENTER) the following command: pip --version.
3. In the optimal situation you’ll get this.

Yellow words are names subject to the change by the name of the user and file location.

Red words are subject to change due to the version of your Python and pip.

https://wiki.python.org/psf/PackagingWG
https://pypi.org/

If the response is absent, this may mean the PATH variable either incorrectly points to the
location of the Python binaries, or doesn’t point at all.

The easiest way to reconfigure the PATH variable is to reinstall Python.

Linux

Different Linux distributions may behave differently when it comes to using pip. Some of
them (for example Gentoo) closely bound to Python may use it internally, may have pip
already preinstalled and are instantly ready to work for you.

Some distributions of Linux may have both Python 2 and Python 3 coexisting, such systems
may launch Python 2 as the default version. In this case, there may be two different pips
identified as pip (or pip2) and pip3.

In such case typing pip --version summons the pip from Python 2, typing pip3 –
version can check the version of pip3.

In some other cases (like some versions of Ubuntu), they don’t have pip preinstalled for you.
You have two possibilities.

1. Install pip as a system package using a dedicated package manager
2. Install pip using internal Python mechanisms.

I recommend using the first choice, type the following command.

sudo apt install python3-pip

MacOS

You’ve installed pip is you used the brew installer, check by the command:

pip3 –version

Now we’ve got pip ready, so I am going to limit the focus to Microsoft Windows only, as its
behaviours (should be) the same in all OSs.

Dependencies
Dependency is a phenomenon that appears every time you’re going to use a piece of
software that relies on other software, this may include more than 1 level of software
development.

Here is an example of dependency, let’s
say you’ve created a Python application
called Premier League, able to predict
future Premier League results with 99%
(if you actually do that, please contact
me IMMEDIATELY). You’ve used some
existing code to achieve that (for
example TensorFlow for Machine
Learning). Does this mean that a
potential package user is obliged to
trace all dependencies and manually
install all the needed packages? That
would be horrible, wouldn’t it?

Definitely yes, don’t be surprised that
this has its own name called
“dependency hell”.

But how do we deal with that? Is everyone just doomed to visited “hell” in order to run the
code?

Fortunately, pip can do all these for us, it can discover, identify and resolve all dependencies.
Moreover, it can do it optimally, meaning that it can avoid any unnecessary downloads and
reinstalls.

How to use pip

Help

Type the following command in Command Prompt or PowerShell.

pip help

You should’ve got this long list of commands; how do we specify the listed
operations?

Type this in the Command Prompt / PowerShell

pip help operation

Where operation is yet to be specified.

For example, we type

pip help install

This will show you the detailed information about using and parameterizing the
install command (and yes, the list is even longer).

List

If you would like to have a glance at all the Python packages you’ve installed so far,
you can use the list function, like this:

pip list

At the right side is a part of the list I’ve got, what you’ve got is totally up to do.
However, for sure you will see two lines on the list: pip and setuptools. This

happens because the OS is convinced that a user wanting pip will very likely need the
setuptools soon, and it’s not wrong.

Show

The pip list isn’t very informative, and it may not satisfy your curiosity. There is a command
that can tell you more about any of the installed packages.

pip show package_name

An example will be

pip show pip

This is what you should’ve get.

You may ask where this data comes from? The information appearing on the prompt is
taken from inside the package being shown. In other words, the package’s creator is obliged
to equip it with all the needed data (or more precisely, metadata).

The power of pip comes from the fact that it’s actually a gateway to the Python software
universe. You can browse and install any of the thousand’s projects and packages in the PyPI
repositories. Keep in mind that pip does not store all PyPI content locally in your computer
as it is unnecessary and uneconomical.

So how does it work? Pip uses the internet to query PyPI and to download the requested
data.

Search

One example of this is when you want to search through PyPI. The command would be:

pip search any_string

The any_string parameter provided by the user (you) will be searched on the names of all
the packages and the summary strings of all the packages.

There might be a LOT of found results, so try to be as specific as possible. For example:

pip search pip

This produces more than 100 lines of results.

If you’re not a fan of console reading, you can use this link to search: Search results · PyPI

Install

Assuming now you’ve found your targeted package and wants to install it onto your
computer.

The command would simply be:

pip install package_name

By default, this will install the package system-wide, if you’re not using those or don’t want
to install the package system-wide, you can install for yourself only using the command:

https://pypi.org/search/

pip install --user package_name

Pip will show a textual animation of the installation progress, after finishing, you can use:

pip show package_name

and

pip list

to get more information about what just happened.

Now the package you just installed is fully accessible, a simple

import
would’ve done the job.

Update

pip install

has two important additional abilities:

1. Update a locally installed package
Command:
pip install -U package_name

2. Install a user-specified version of a package (it installs the newest available version
by default)
Command:
pip install package_name==package_version
Note the double equal sign.

Uninstall

Let’s say you no longer need a package and decided to get rid of it. The pip command
uninstall can help too! It will execute all the needed steps. Command:

pip uninstall package_name

Pip will want to know if you’re sure about the choice you’re making

Proceed (y/n)?

‘y’ stands for Yes and ‘n’ stands for No.

The user (you) has to type either ‘y’ or ‘n’ to complete the process.

Key notes
1. A repository us designed to collect and share free Python code exists and works

under the name Python Package Index (PyPI), the website: https://pypi.org/
2. A specialized tool has been created and its name is pip (pip installs packages…) As

pip may not be deployed as a part of standard Python installation, it is possible that
you will have to install manually. Pip is a console tool.

3. Commands to check pip’s version
pip --version
or
pip3 --version

4. The list of main pip activities/commands looks as follows.
pip help operation
pip list
pip show package_name
pip search any_string
pip install package_name
pip install --user package_name
pip install -U package_name
pip uninstall package_name
Explanation of all these commands can be found above.

https://pypi.org/

