Strings and Characters in Python
Computers store characters as numbers. The assignment must include more characters than you might expect. Many of them are invisible to humans (for example whitespace ‘ ‘ and some control characters, to control I/O devices), but essential to computers. In case you would like to know ‘\n’ is one of the special control characters, this is an end-line character.

Characters
ASCII
There are many assignments of characters into numbers, but the universal and widely accepted standard implemented by (almost) all computers and operating systems all over the world is called ASCII (short for American Standard Code for Information Interchange).
The ASCII assignment provides space for 256 (28, why? You will know later) different characters, you can find the table here (source: https://www.asciitable.com).
[image: ASCII Table]Some interesting values are 32 (space), 48 (‘0’), 65 (‘A’) and 87 (‘a’). The letters are arranged in the same order as in the Latin alphabet.

So, you may ask, why are there exactly 256 different characters, why can’t there be 260? Remember that computer stores everything in binary form (aka 0s and 1s), 256, which is 28, can thus be stored by 8 bits, which is the same as 1 byte.

As you can see from the table, only 128 values are used, how about the 128 characters left? Is it possible for us to fit other national characters into the remaining 128 characters? The answer is no.
It is not enough for all possible languages, but it is sufficient for some.

Code points and Code pages
A code point is a number which makes a character, for example 32 is a code point which makes a space in ASCII encoding.
A code page is a standard for using the upper 128 code points to store specific national characters, for example, there are different code pages for Western Europe and Eastern Europe, Cyrillic and Greek alphabets, Arabic and Hebrew languages and so on.
This means that the one and same code point can make different characters when used in different code pages. For example, the code point 200 makes ‘Č’, a letter used by some Slavic languages, when utilized by the ISO/IEC 8859-2 code page. Same code point 200 makes Ш (a Cyrillic letter) when used by the ISO/IEC 8849-5 code page.
In consequence, to determine the meaning of a specific code point, you have to know the target code page, in other words, the code points derived from the code page concept are ambiguous.

Unicode
Code pages helped to solve the international language problem for some time, but it soon turned out that this is not a permanent solution. Thus, Unicode was formed.
Unicode assigns unique (unambiguous) characters (letters, hyphens, ideograms, etc.) to more than a million code points. The first 128 Unicode codes are identical to ASCII and the first 256 Unicode points are identical to the ISO/IEC 8849-1 code page (designed for Western European languages).
The Unicode standard says nothing about how to code and store the characters in the memory and files. It only names all available characters and assigns them to planes.
There is more than one standard describing techniques used to implement Unicode in actual computers and computer storage systems.

UCS-4 (short for Universal Character Set, the most general one)
It uses 32 bits (4 bytes) to store each character, and the code is just Unicode code points’ unique number. A file containing UCS-4 encoded text may start with a BOM (byte order mark), an unprintable combination of bits announcing the nature of the file’s contents.
UCS-4 is a rather wasteful standard, it increases a text’s size by 4 times compared to standard ASCII.

UTF-8 (short for Unicode Transformation Format, most common)
The concept is very smart. UTF-8 uses as many bits for each of the code points as it really needs to represent them. For example:
· All standard ASCII characters occupy 8 bits (1 byte)
· Non-Latin characters occupy 16 bites (2 bytes)
· CJK (China-Japan-Korea) ideographs occupy 24 bits (4 bytes)
Due to the features of the method used by UTF-8, BOM is not needed, but some of the tools look for it when reading the file, and many editors set it up during the save.

Python 3 fully support Unicode and UTF-8
You can use Unicode/UTF-8 encoded characters to name variables and other entities. You can also use them during all input and output.

Strings
Strings (brief review)
Strings in Python are immutable sequences.

The function returns the length of the string
word = "hello"
print(len(word)) # 5
A string can be empty
word = ""
print(len(word)) # 0
Don’t forget a backslash ‘\’ is used as an escape character, and is not included in the string’s total length
word = "I\'m"
print(len(word)) # 3

Multiline strings start and end with 3 apostrophes or 3 quotes (but the starting symbol must be the same as the ending). As demonstrated below:
multiline = '''Line 1
Line 2'''

print(len(multiline)) # 13
print(multiline)
Line 1
Line 2
There is clearly a missing character if you counted. It’s a whitespace located between the two lines ‘’. This special control character is used to force a line feed (hence its name LF), you can’t see it, but it counts.

Operations on strings
Concatenation of strings
a = "a"
b = "b"
print(a + b) # ab
Replication of strings
a = "1"
print(a * 5) # 11111

As you can see, they use the same operator as numbers, the ability of doing this is called overloading.
The order in a concatenation of string matters, for the first example, exchanging for produces a different output. However, this doesn’t matter in replication.
Note that one of the there should only be 1 string in an operation of replication of strings.

Character -> code point (also new syntax highlighting style if you’ve noticed)
Function:
a = 'a'
b = 'α' # Greek Alpha
print(ord(a)) # 97
print(ord(b)) # 946

Code point -> character
Function:
print(chr(97)) # a
print(chr(945)) # α
Note this:
chr(ord(x)) == x
ord(chr(x)) == x

More in String (brief)
Python strings are sequences, they aren’t lists, but you can treat them like lists in many particular cases.
Indexing
a = "Hi, I am ML7!"

for i in range(len(a)):
 print(a[i], end = ' ')
H i , I a m M L 7 !
Iterating
a = "Hi, I am ML7!"

for x in a:
 print(x, end = '_') # H_i_,_ _I_ _a_m_ _M_L_7_!_
Slicing
a = "abdefg"

print(a[1 : 3]) # bd
print(a[3 :]) # efg
print(a[: 3]) # abd
print(a[3 : -2]) # e
print(a[-3 : 4]) # e
print(a[:: 2]) # adf
print(a[1 :: 2]) # beg
 and
Checks if its left argument (string) can be found anywhere within the right argument (another string)
ori = "abcd"

print("a" in ori) # True
print('e' in ori) # False
print("abc" in ori) # True
print("bcd" not in ori) # False

Python strings are IMMUTABLE
I’ve mentioned this in the brief review part, immutable simply means that you cannot remove any characters from the string, the only thing you can do is to remove the string as a whole.
It doesn’t support and either.
alphabet = "bcdefghijklmnopqrstuvwxy"
alphabet = "a" + alphabet
alphabet = alphabet + "z"
print(alphabet) # abcdefghijklmnopqrstuvwxyz
You can do this in order so combat with the problem of immutability.

Strings functions and methods
The function returns the character with lowest code point value.
print(min("aAbByYzZ")) # A

s = 'Hi, my name is ML7.'
print('[' + min(s) + ']') # []

The function returns the index of the first occurrence of the string you put, note that the string must exist in the string, or else it will cause a exception.
print("aAbByYzZaA".index("b")) # 2
print("aAbByYzZaA".index("Z")) # 7
print("aAbByYzZaA".index("A")) # 1

The function takes its argument (string) and creates a new list containing all the string’s characters, one per list element.
print(list("abcabc")) # ['a', 'b', 'c', 'a', 'b', 'c']

The functions counts all the occurrences of the element inside the sequence, the absence of such element is fine, as it will return a value 0
print("abcabc".count("b")) # 2
print('abcabc'.count("d")) # 0
However, overlapping doesn’t count, you have to write your own function / algorithm to deal with the problem
a = "ababa"
print(a.count("aba")) # 1

The function does the following, if the first character inside the string is a letter, it will be converted to upper-case, all remaining letters from the string will be converted to lower-case.
print("Alpha".capitalize() # Alpha
print('ALPHA'.capitalize()) # Alpha
print(' Alpha'.capitalize()) # aplha
print('123'.capitalize()) # 123
print("αβγδ".capitalize()) # αβγδ
The function makes a copy of the original string and try to center it inside a field of a specified width, it is done by adding some spaces before and after the string.
print('[' + 'Test'.center(2) + ']') # [Beta]
print('[' + 'Test'.center(4) + ']') # [Beta]
print('[' + 'Test'.center(6) + ']') # [Beta]

The two-parameter variant of makes use of the character from the second argument instead of a space.
print('[' + 'game'.center(10, '*') + ']') # [***game***]
print('[' + 'game'.center(9, '*') + ']') # [***game**]
Also, as shown in the above example, if the total length of the padding is odd, 1 more padding character will be added in front of the initial string.

The method checks if the give string ends with the specified argument and returns True of False.
s = "zeta"
print(s.endswith("a")) # True
print(s.endswith("A")) # False
print(s.endswith("et")) # False
print(s.endswith("eta")) # True

The method is a mirror reflection of , it checks if the given string starts with the specified substring, and returns either True of False.
print("omega".startswith("ega")) # False
print("omega".startswith("om")) # True

The method, it is very similar to . However, there are still differences, is safer, it doesn’t generate an error for an argument containing a non-existent substring (it will return -1 then). Also, it only works with strings, don’t try to apply it to any other sequence.
s = 'theta'
print(s.find('eta')) # 2
print(s.find('ha')) # -1

If you want to perform the find, not from the string’s beginning, but from any position, you can use the two-parameter variant of the method, as follows:
print('kepa'.find('a', 2)) # 3
The second argument specifies the index at which the search will be started (it doesn’t have to fit inside the string).
The following code points all the position in the string where the word “the” can be found
text = """A variation of the ordinary lorem ipsum
text has been used in typesetting since the 1960s
or earlier, when it was popularized by advertisements
for Letraset transfer sheets. It was introduced to
the Information Age in the mid-1980s by the Aldus Corporation,
which employed it in graphics and word-processing templates
for its desktop publishing program PageMaker (from Wikipedia)"""

pos = text.find('the')
while pos != -1:
 print(pos)
 pos = text.find('the', pos + 1)
prediction of output is left as an exercise

There is also a three-parameter variant of the method, the third argument points to the first index which wont be taken in the consideration during the search (upper limit of the search)
print('hello'.find('o', 1, 5)) # 4
print('hello'.find('o', 2, 4)) # -1

The methods (one-, two- and three-parameter) do the same things as , but they start their searches from the end of the string, not from the beginning (hence the prefix ‘r’, for right).
print("hi hi hi".rfind("hi")) # 6
print("hi hi hi".rfind("hi", 9)) # -1
print("hi hi hi".rfind("hi", 3, 9)) # 6

The method checks if the string contains only digits or alphabetical characters, and returns True or False.
print('Python'.isalnum()) # True
print('Python3'.isalnum()) # True
print('310'.isalnum()) # True
print('@'.isalnum()) # False
print('Python_3'.isalnum()) # False
print(''.isalnum()) # False
print('ml7 michael'.isalnum()) # False
print('ΑβΓδ'.isalnum()) # True
print('20E1'.isalnum()) # True

The and methods work as their names suggest.
print("Moooo".isalpha()) # True
print('Mu40'.isalpha()) # False

print('2018'.isdigit()) # True
print("Year2019".isdigit()) # False

The , and methods also work as their names suggest.
print("Moooo".islower()) # False
print('moooo'.islower()) # True

print(' \n '.isspace()) # True
print(" ".isspace()) # True
print("mooo mooo mooo".isspace()) # False

print("Moooo".isupper()) # False
print('moooo'.isupper()) # False
print('MOOOO'.isupper()) # True

The method, it expects on argument as a list, it must be assured that all the list’s elements are strings, otherwise a exception will be raised. All the list’s elements will be joined into one string but the string from which the method has been invoked is used as a separator. The newly created string is returned.
print(" ".join(["Cristiano", "Ronaldo"])) # Cristiano Ronaldo

The method makes a copy of a source string, replaces all upper-case letters with their corresponding lower-case letters, and returns the string as the result.
print("SiGmA=60".lower()) # sigma=60

The method exists as well.
print("SiGmA=60".upper()) # SIGMA=60

The method makes a new string by swapping the case of all letters within the source string, lower-case to upper-case and vice versa.

The method returns a newly created string formed from the original one by removing all leading whitespaces.
print("[" + " ml7 ".lstrip() + "]") # [ml7]

The method combines the effects caused by and , it makes a new string lacking all the leading and trailing whitespaces.
print("[" + " alpha ".strip() + "]") # [alpha]

The one-parameter method does the same as its parameter-less version, but removes all characters enlisted in its argument (a string), not just whitespaces.
print("www.youtube.com".lstrip("w.")) # youtube.com
Mind the word leading.
print("www.youtube.com".lstrip(".com")) # www.youtube.com

The rstrip() method exist, but affect the opposite side of the string.
print("[" + " ml7 ".rstrip() + "]") # [ml7]
print("www.youtube.com".rstrip(".com")) # www.youtube

The method (two-parameter) returns a copy of the original string in which all occurrences of the first argument have been replaced by the second argument. (AND YES YOU CAN REMOVE CHARACTERS FROM THE STRING!!!)
print("facebook.com".replace("facebook", "instagram")) # instagram.com
print("Hello World".replace(" World", "")) # Hello

The method (three-parameter) limits the number of replacements.
print("hello, hello".replace("hello", "Hola", 1)) # Hola, hello
print("hello, hello".replace("hello", "Hola", 2)) # Hola, Hola

The method does what is says, it splits the string and builds a list of all detected substrings. It assumes that the substrings are delimited by whitespaces, the spaces don’t take part in the operation, and aren’t copied into the resulting list. Empty string will result in an empty list. The reverse operation can be performed by the method.
print("ml7 michael".split()) # ['ml7', 'michael']
print("ml7 michael".split()) # ['ml7', 'michael']

The method
print("I know that I know nothing.".swapcase())
i KNOW THAT i KNOW NOTHING.

The method changes ever word’s first letter to upper-letter, turning all other ones to lower-case.
print("I know that I know nothing. Part 1.".title())
I Know That I Know Nothing. Part 1.

String Comparisons
Some comparing operators with integers work in strings as well, that includes:
==
!=
>
>=
<
<=
Don’t forget that Python is not aware of subtle linguistic issues, it just compares code point values, character by character.
For examples
("alpha" == "alpha") # True
("alpha" != "Alpha") # True
("alpha" < "Alpha") # False
What if the strings have different length?
If there are two strings, denote as and , and let’s assume a is prefix of (starts with), then is larger or equal to . If the length of string is equal to that of string , then the two strings are identical. Or else, string is larger than string . Same theory applies to , , , operators.

Even if a string contains digits only, it’s still not a number, for example, this holds:

Comparing strings against numbers are not recommended (and why would you do that?)
They only comparisons you can perform with impunity are and operators. Using anyone of the other comparison operators will raise a exception.

String Sorting
Comparing is closely related to sorting, there are two possible ways to sort lists containing string. Sorting is very common in the real world, anytime you see a list of names, goods, titles, cities, countries, you expect them to be sorted.
Method 1
The function will be used, as you can see in the example below, the original list is not changed, a new list was returned. (This description is a bit simplified compared to the actual implementation, we’ll discuss it later)
a = ["delta", "charlie", "echo", "bravo", "alfa"]
b = sorted(a)
print(a) # ['delta', 'charlie', 'echo', 'bravo', 'alfa']
print(b) # ['alfa', 'bravo', 'charlie', 'delta', 'echo']

Method 2
The ordering is now preformed in situ by the method named .
a = ["delta", "charlie", "echo", "bravo", "alfa"]
a.sort()
print(a) # ['alfa', 'bravo', 'charlie', 'delta', 'echo']

Conversion between Strings and Numbers
The conversion from numbers to strings are always possible, all you have to do is this:
pi = 3.14
s = str(pi)
print(s) # 3.14
print(type(s)) # <class 'str'>

The conversion from strings to numbers is possible when and only when the string represents a valid number, if it’s not, a exception will be shown.
s1 = "5"
a = int(s1)
print(a) # 5
s2 = "3.141592"
pi = float(s2)
print(s2) # 3.141592
s3 = "abc"
b = int(s3) # ValueError

Some takeaways
1. Strings are key tools in modern data processing, as most useful data are actually strings. For example, using a web search engine (which seems quite trivial these days) utilizes extremely complex and complicated string processing, involving unimaginable amounts of dat.
2. Comparing strings in a strict way (as Python does) can be very unsatisfactory when it comes to advanced searches (during extensive database queries). Responding to this demand, a number of fuzzy string comparison algorithms has been created and implemented. These algorithms are able to find strings which aren’t equal in the Python sense, but similar, two examples are Hamming distance (Hamming distance - Wikipedia) and Levenshtein distance (Levenshtein distance - Wikipedia).
3. Another way of comparing strings is finding their acoustic similarity (like “raise” and “race”). Such similarity has to be established for every language (or even dialect). An algorithm used to perform such a comparison for English is called Soundex (Soundex - Wikipedia) and was invented in 1918!
4. Due to limited native float and integer data precision, it’s sometimes reasonable to store and process huge numeric values as strings. This is the technique Python uses when you force it to operate on an integer number consisting of a very large number of digits. In Python, value of an integer is not restricted by the number of bits, but by the available memory. (Source: Built-in Types — Python 3.10.4 documentation, a more detailed explanation:)

Anything that can go wrong, will go wrong. Murphy’s law
Here is a simple program calculating the square root of a number
import math
x = float(input())
y = math.sqrt(x)
print(y)
However, if you didn’t input a valid number, you will get a . As to how to fix this problem, please refer to .

image1.gif

