

Strings and Characters in Python
Computers store characters as numbers. The assignment must include more characters than
you might expect. Many of them are invisible to humans (for example whitespace ‘ ‘ and
some control characters, to control I/O devices), but essential to computers. In case you
would like to know ‘\n’ is one of the special control characters, this is an end-line character.

Characters

ASCII
There are many assignments of characters into numbers, but the universal and widely
accepted standard implemented by (almost) all computers and operating systems all over
the world is called ASCII (short for American Standard Code for Information Interchange).

The ASCII assignment provides space for 256 (28, why? You will know later) different
characters, you can find the table here (source: https://www.asciitable.com).

Some interesting
values are 32
(space), 48 (‘0’), 65
(‘A’) and 87 (‘a’). The
letters are arranged
in the same order as
in the Latin alphabet.

So, you may ask, why
are there exactly 256
different characters,
why can’t there be
260? Remember that
computer stores
everything in binary
form (aka 0s and 1s),
256, which is 28, can
thus be stored by 8
bits, which is the
same as 1 byte.

As you can see from the table, only 128 values are used, how about the 128 characters left?
Is it possible for us to fit other national characters into the remaining 128 characters? The
answer is no.

It is not enough for all possible languages, but it is sufficient for some.

Code points and Code pages
A code point is a number which makes a character, for example 32 is a code point which
makes a space in ASCII encoding.

A code page is a standard for using the upper 128 code points to store specific national
characters, for example, there are different code pages for Western Europe and Eastern
Europe, Cyrillic and Greek alphabets, Arabic and Hebrew languages and so on.

This means that the one and same code point can make different characters when used in

https://www.asciitable.com/

different code pages. For example, the code point 200 makes ‘Č’, a letter used by some
Slavic languages, when utilized by the ISO/IEC 8859-2 code page. Same code point 200
makes Ш (a Cyrillic letter) when used by the ISO/IEC 8849-5 code page.

In consequence, to determine the meaning of a specific code point, you have to know the
target code page, in other words, the code points derived from the code page concept are
ambiguous.

Unicode

Code pages helped to solve the international language problem for some time, but it soon
turned out that this is not a permanent solution. Thus, Unicode was formed.

Unicode assigns unique (unambiguous) characters (letters, hyphens, ideograms, etc.) to
more than a million code points. The first 128 Unicode codes are identical to ASCII and the
first 256 Unicode points are identical to the ISO/IEC 8849-1 code page (designed for Western
European languages).

The Unicode standard says nothing about how to code and store the characters in the
memory and files. It only names all available characters and assigns them to planes.

There is more than one standard describing techniques used to implement Unicode in actual
computers and computer storage systems.

UCS-4 (short for Universal Character Set, the most general one)
It uses 32 bits (4 bytes) to store each character, and the code is just Unicode code points’
unique number. A file containing UCS-4 encoded text may start with a BOM (byte order
mark), an unprintable combination of bits announcing the nature of the file’s contents.

UCS-4 is a rather wasteful standard, it increases a text’s size by 4 times compared to
standard ASCII.

UTF-8 (short for Unicode Transformation Format, most common)
The concept is very smart. UTF-8 uses as many bits for each of the code points as it really
needs to represent them. For example:

• All standard ASCII characters occupy 8 bits (1 byte)

• Non-Latin characters occupy 16 bites (2 bytes)

• CJK (China-Japan-Korea) ideographs occupy 24 bits (4 bytes)

Due to the features of the method used by UTF-8, BOM is not needed, but some of the tools
look for it when reading the file, and many editors set it up during the save.

Python 3 fully support Unicode and UTF-8
You can use Unicode/UTF-8 encoded characters to name variables and other entities. You
can also use them during all input and output.

Strings

Strings (brief review)
Strings in Python are immutable sequences.

The 𝑙𝑒𝑛() function returns the length of the string

word = "hello"

print(len(word)) # 5
A string can be empty

word = ""

print(len(word)) # 0
Don’t forget a backslash ‘\’ is used as an escape character, and is not included in the string’s
total length

word = "I\'m"

print(len(word)) # 3

Multiline strings start and end with 3 apostrophes or 3 quotes (but the starting symbol must
be the same as the ending). As demonstrated below:

multiline = '''Line 1

Line 2'''

print(len(multiline)) # 13

print(multiline)

Line 1

Line 2
There is clearly a missing character if you counted. It’s a whitespace located between the
two lines ‘\𝑛’. This special control character is used to force a line feed (hence its name LF),
you can’t see it, but it counts.

Operations on strings

Concatenation of strings

a = "a"

b = "b"

print(a + b) # ab

Replication of strings

a = "1"

print(a * 5) # 11111

As you can see, they use the same operator as numbers, the ability of doing this is called
overloading.

The order in a concatenation of string matters, for the first example, exchanging 𝑏 + 𝑎 for
𝑎 + 𝑏 produces a different output. However, this doesn’t matter in replication.

Note that one of the there should only be 1 string in an operation of replication of strings.

Character -> code point (also new syntax highlighting style if you’ve noticed)

Function: 𝑜𝑟𝑑()

a = 'a'

b = 'α' # Greek Alpha

print(ord(a)) # 97

print(ord(b)) # 946

Code point -> character

Function: 𝑐ℎ𝑟()

print(chr(97)) # a

print(chr(945)) # α
Note this:

chr(ord(x)) == x

ord(chr(x)) == x

More in String (brief)
Python strings are sequences, they aren’t lists, but you can treat them like lists in many
particular cases.

Indexing

a = "Hi, I am ML7!"

for i in range(len(a)):

 print(a[i], end = ' ')

H i , I a m M L 7 !

Iterating

a = "Hi, I am ML7!"

for x in a:

 print(x, end = '_') # H_i_,_ _I_ _a_m_ _M_L_7_!_

Slicing

a = "abdefg"

print(a[1 : 3]) # bd

print(a[3 :]) # efg

print(a[: 3]) # abd

print(a[3 : -2]) # e

print(a[-3 : 4]) # e

print(a[:: 2]) # adf

print(a[1 :: 2]) # beg

𝐼𝑛 and 𝑛𝑜𝑡 𝑖𝑛

Checks if its left argument (string) can be found anywhere within the right argument
(another string)

ori = "abcd"

print("a" in ori) # True

print('e' in ori) # False

print("abc" in ori) # True

print("bcd" not in ori) # False

Python strings are IMMUTABLE

I’ve mentioned this in the brief review part, immutable simply means that you cannot
remove any characters from the string, the only thing you can do is to remove the string as a
whole.

It doesn’t support 𝑎𝑝𝑝𝑒𝑛𝑑() and 𝑖𝑛𝑠𝑒𝑟𝑡() either.

alphabet = "bcdefghijklmnopqrstuvwxy"

alphabet = "a" + alphabet

alphabet = alphabet + "z"

print(alphabet) # abcdefghijklmnopqrstuvwxyz
You can do this in order so combat with the problem of immutability.

Strings functions and methods
The 𝑚𝑖𝑛() function returns the character with lowest code point value.

print(min("aAbByYzZ")) # A

s = 'Hi, my name is ML7.'

print('[' + min(s) + ']') # []

The 𝑖𝑛𝑑𝑒𝑥() function returns the index of the first occurrence of the string you put, note
that the string must exist in the string, or else it will cause a 𝑉𝑎𝑙𝑢𝑒𝐸𝑟𝑟𝑜𝑟 exception.

print("aAbByYzZaA".index("b")) # 2

print("aAbByYzZaA".index("Z")) # 7

print("aAbByYzZaA".index("A")) # 1

The 𝑙𝑖𝑠𝑡() function takes its argument (string) and creates a new list containing all the
string’s characters, one per list element.

print(list("abcabc")) # ['a', 'b', 'c', 'a', 'b', 'c']

The 𝑐𝑜𝑢𝑛𝑡() functions counts all the occurrences of the element inside the sequence, the
absence of such element is fine, as it will return a value 0

print("abcabc".count("b")) # 2

print('abcabc'.count("d")) # 0
However, overlapping doesn’t count, you have to write your own function / algorithm to
deal with the problem

a = "ababa"

print(a.count("aba")) # 1

The 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒() function does the following, if the first character inside the string is a
letter, it will be converted to upper-case, all remaining letters from the string will be
converted to lower-case.

print("Alpha".capitalize() # Alpha

print('ALPHA'.capitalize()) # Alpha

print(' Alpha'.capitalize()) # aplha

print('123'.capitalize()) # 123

print("αβγδ".capitalize()) # αβγδ

The 𝑐𝑒𝑛𝑡𝑒𝑟() function makes a copy of the original string and try to center it inside a field of
a specified width, it is done by adding some spaces before and after the string.

print('[' + 'Test'.center(2) + ']') # [Beta]

print('[' + 'Test'.center(4) + ']') # [Beta]

print('[' + 'Test'.center(6) + ']') # [Beta]

The two-parameter variant of 𝑐𝑒𝑛𝑡𝑒𝑟() makes use of the character from the second
argument instead of a space.

print('[' + 'game'.center(10, '*') + ']') # [***game***]

print('[' + 'game'.center(9, '*') + ']') # [***game**]
Also, as shown in the above example, if the total length of the padding is odd, 1 more
padding character will be added in front of the initial string.

The 𝑒𝑛𝑑𝑠𝑤𝑖𝑡ℎ() method checks if the give string ends with the specified argument and
returns True of False.

s = "zeta"

print(s.endswith("a")) # True

print(s.endswith("A")) # False

print(s.endswith("et")) # False

print(s.endswith("eta")) # True

The 𝑠𝑡𝑎𝑟𝑡𝑠𝑤𝑖𝑡ℎ() method is a mirror reflection of 𝑒𝑛𝑑𝑠𝑤𝑖𝑡ℎ(), it checks if the given string
starts with the specified substring, and returns either True of False.

print("omega".startswith("ega")) # False

print("omega".startswith("om")) # True

The 𝑓𝑖𝑛𝑑() method, it is very similar to 𝑖𝑛𝑑𝑒𝑥(). However, there are still differences, 𝑓𝑖𝑛𝑑()
is safer, it doesn’t generate an error for an argument containing a non-existent substring (it
will return -1 then). Also, it only works with strings, don’t try to apply it to any other
sequence.

s = 'theta'

print(s.find('eta')) # 2

print(s.find('ha')) # -1

If you want to perform the find, not from the string’s beginning, but from any position, you
can use the two-parameter variant of the 𝑓𝑖𝑛𝑑() method, as follows:

print('kepa'.find('a', 2)) # 3
The second argument specifies the index at which the search will be started (it doesn’t have
to fit inside the string).

The following code points all the position in the string where the word “the” can be found

text = """A variation of the ordinary lorem ipsum

text has been used in typesetting since the 1960s

or earlier, when it was popularized by advertisements

for Letraset transfer sheets. It was introduced to

the Information Age in the mid-1980s by the Aldus Corporation,

which employed it in graphics and word-processing templates

for its desktop publishing program PageMaker (from Wikipedia)"""

pos = text.find('the')

while pos != -1:

 print(pos)

 pos = text.find('the', pos + 1)

prediction of output is left as an exercise

There is also a three-parameter variant of the 𝑓𝑖𝑛𝑑() method, the third argument points to
the first index which wont be taken in the consideration during the search (upper limit of the
search)

print('hello'.find('o', 1, 5)) # 4

print('hello'.find('o', 2, 4)) # -1

The 𝑟𝑓𝑖𝑛𝑑() methods (one-, two- and three-parameter) do the same things as 𝑓𝑖𝑛𝑑(), but
they start their searches from the end of the string, not from the beginning (hence the prefix
‘r’, for right).

print("hi hi hi".rfind("hi")) # 6

print("hi hi hi".rfind("hi", 9)) # -1

print("hi hi hi".rfind("hi", 3, 9)) # 6

The 𝑖𝑠𝑎𝑙𝑛𝑢𝑚() method checks if the string contains only digits or alphabetical characters,
and returns True or False.

print('Python'.isalnum()) # True

print('Python3'.isalnum()) # True

print('310'.isalnum()) # True

print('@'.isalnum()) # False

print('Python_3'.isalnum()) # False

print(''.isalnum()) # False

print('ml7 michael'.isalnum()) # False

print('ΑβΓδ'.isalnum()) # True

print('20E1'.isalnum()) # True

The 𝑖𝑠𝑎𝑙𝑝ℎ𝑎() and 𝑖𝑠𝑑𝑖𝑔𝑖𝑡() methods work as their names suggest.

print("Moooo".isalpha()) # True

print('Mu40'.isalpha()) # False

print('2018'.isdigit()) # True

print("Year2019".isdigit()) # False

The 𝑖𝑠𝑙𝑜𝑤𝑒𝑟(), 𝑖𝑠𝑠𝑝𝑎𝑐𝑒() and 𝑖𝑠𝑢𝑝𝑝𝑒𝑟() methods also work as their names suggest.

print("Moooo".islower()) # False

print('moooo'.islower()) # True

print(' \n '.isspace()) # True

print(" ".isspace()) # True

print("mooo mooo mooo".isspace()) # False

print("Moooo".isupper()) # False

print('moooo'.isupper()) # False

print('MOOOO'.isupper()) # True

The 𝑗𝑜𝑖𝑛() method, it expects on argument as a list, it must be assured that all the list’s
elements are strings, otherwise a 𝑇𝑦𝑝𝑒𝐸𝑟𝑟𝑜𝑟 exception will be raised. All the list’s elements
will be joined into one string but the string from which the method has been invoked is used
as a separator. The newly created string is returned.

print(" ".join(["Cristiano", "Ronaldo"])) # Cristiano Ronaldo

The 𝑙𝑜𝑤𝑒𝑟() method makes a copy of a source string, replaces all upper-case letters with
their corresponding lower-case letters, and returns the string as the result.

print("SiGmA=60".lower()) # sigma=60

The 𝑢𝑝𝑝𝑒𝑟() method exists as well.

print("SiGmA=60".upper()) # SIGMA=60

The 𝑠𝑤𝑎𝑝𝑐𝑎𝑠𝑒() method makes a new string by swapping the case of all letters within the
source string, lower-case to upper-case and vice versa.

The 𝑙𝑠𝑡𝑟𝑖𝑝() method returns a newly created string formed from the original one by
removing all leading whitespaces.

print("[" + " ml7 ".lstrip() + "]") # [ml7]

The 𝑠𝑡𝑟𝑖𝑝() method combines the effects caused by 𝑙𝑠𝑡𝑟𝑖𝑝() and 𝑟𝑠𝑡𝑟𝑖𝑝(), it makes a new
string lacking all the leading and trailing whitespaces.

print("[" + " alpha ".strip() + "]") # [alpha]

The one-parameter 𝑙𝑠𝑡𝑟𝑖𝑝() method does the same as its parameter-less version, but
removes all characters enlisted in its argument (a string), not just whitespaces.

print("www.youtube.com".lstrip("w.")) # youtube.com
Mind the word leading.

print("www.youtube.com".lstrip(".com")) # www.youtube.com

The rstrip() method exist, but affect the opposite side of the string.

print("[" + " ml7 ".rstrip() + "]") # [ml7]

print("www.youtube.com".rstrip(".com")) # www.youtube

The 𝑟𝑒𝑝𝑙𝑎𝑐𝑒() method (two-parameter) returns a copy of the original string in which all
occurrences of the first argument have been replaced by the second argument. (AND YES
YOU CAN REMOVE CHARACTERS FROM THE STRING!!!)

print("facebook.com".replace("facebook", "instagram")) # instagram.com

print("Hello World".replace(" World", "")) # Hello

The 𝑟𝑒𝑝𝑙𝑎𝑐𝑒() method (three-parameter) limits the number of replacements.

print("hello, hello".replace("hello", "Hola", 1)) # Hola, hello

print("hello, hello".replace("hello", "Hola", 2)) # Hola, Hola

The 𝑠𝑝𝑙𝑖𝑡() method does what is says, it splits the string and builds a list of all detected
substrings. It assumes that the substrings are delimited by whitespaces, the spaces don’t
take part in the operation, and aren’t copied into the resulting list. Empty string will result in
an empty list. The reverse operation can be performed by the 𝑗𝑜𝑖𝑛() method.

print("ml7 michael".split()) # ['ml7', 'michael']

print("ml7 michael".split()) # ['ml7', 'michael']

The 𝑠𝑤𝑎𝑝𝑐𝑎𝑠𝑒() method

print("I know that I know nothing.".swapcase())

i KNOW THAT i KNOW NOTHING.

The 𝑡𝑖𝑡𝑙𝑒() method changes ever word’s first letter to upper-letter, turning all other ones to
lower-case.

print("I know that I know nothing. Part 1.".title())

I Know That I Know Nothing. Part 1.

String Comparisons
Some comparing operators with integers work in strings as well, that includes:

==

!=

>

>=

<

<=
Don’t forget that Python is not aware of subtle linguistic issues, it just compares code point
values, character by character.

For examples

("alpha" == "alpha") # True

("alpha" != "Alpha") # True

("alpha" < "Alpha") # False
What if the strings have different length?

If there are two strings, denote as 𝑎 and 𝑏, and let’s assume a is 𝑎 prefix of 𝑏 (𝑏 starts with
𝑎), then 𝑏 is larger or equal to 𝑎. If the length of string 𝑏 is equal to that of string 𝑎, then the
two strings are identical. Or else, string 𝑏 is larger than string 𝑎. Same theory applies to
𝑠𝑚𝑎𝑙𝑙𝑒𝑟, 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜, 𝑙𝑎𝑟𝑔𝑒𝑟, 𝑙𝑎𝑟𝑔𝑒𝑟 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 operators.

Even if a string contains digits only, it’s still not a number, for example, this holds:

"10" != "010"

Comparing strings against numbers are not recommended (and why would you do that?)

They only comparisons you can perform with impunity are == and ! = operators. Using
anyone of the other comparison operators will raise a 𝑇𝑦𝑝𝑒𝐸𝑟𝑟𝑜𝑟 exception.

String Sorting

Comparing is closely related to sorting, there are two possible ways to sort lists containing
string. Sorting is very common in the real world, anytime you see a list of names, goods,
titles, cities, countries, you expect them to be sorted.

Method 1

The function 𝑠𝑜𝑟𝑡𝑒𝑑() will be used, as you can see in the example below, the original list is
not changed, a new list was returned. (This description is a bit simplified compared to the
actual implementation, we’ll discuss it later)

a = ["delta", "charlie", "echo", "bravo", "alfa"]

b = sorted(a)

print(a) # ['delta', 'charlie', 'echo', 'bravo', 'alfa']

print(b) # ['alfa', 'bravo', 'charlie', 'delta', 'echo']

Method 2

The ordering is now preformed in situ by the method named 𝑠𝑜𝑟𝑡().

a = ["delta", "charlie", "echo", "bravo", "alfa"]

a.sort()

print(a) # ['alfa', 'bravo', 'charlie', 'delta', 'echo']

Conversion between Strings and Numbers
The conversion from numbers to strings are always possible, all you have to do is this:

pi = 3.14

s = str(pi)

print(s) # 3.14

print(type(s)) # <class 'str'>

The conversion from strings to numbers is possible when and only when the string
represents a valid number, if it’s not, a 𝑉𝑎𝑙𝑢𝑒𝐸𝑟𝑟𝑜𝑟 exception will be shown.

s1 = "5"

a = int(s1)

print(a) # 5

s2 = "3.141592"

pi = float(s2)

print(s2) # 3.141592

s3 = "abc"

b = int(s3) # ValueError

Some takeaways
1. Strings are key tools in modern data processing, as most useful data are actually

strings. For example, using a web search engine (which seems quite trivial these
days) utilizes extremely complex and complicated string processing, involving
unimaginable amounts of dat.

2. Comparing strings in a strict way (as Python does) can be very unsatisfactory when it
comes to advanced searches (during extensive database queries). Responding to this
demand, a number of fuzzy string comparison algorithms has been created and
implemented. These algorithms are able to find strings which aren’t equal in the
Python sense, but similar, two examples are Hamming distance (Hamming distance -
Wikipedia) and Levenshtein distance (Levenshtein distance - Wikipedia).

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

3. Another way of comparing strings is finding their acoustic similarity (like “raise” and
“race”). Such similarity has to be established for every language (or even dialect). An
algorithm used to perform such a comparison for English is called Soundex (Soundex
- Wikipedia) and was invented in 1918!

4. Due to limited native float and integer data precision, it’s sometimes reasonable to
store and process huge numeric values as strings. This is the technique Python uses
when you force it to operate on an integer number consisting of a very large number
of digits. In Python, value of an integer is not restricted by the number of bits, but
by the available memory. (Source: Built-in Types — Python 3.10.4 documentation, a
more detailed explanation:)

Anything that can go wrong, will go wrong. Murphy’s law

Here is a simple program calculating the square root of a number

import math

x = float(input())

y = math.sqrt(x)

print(y)
However, if you didn’t input a valid number, you will get a 𝑉𝑎𝑙𝑢𝑒𝐸𝑟𝑟𝑜𝑟. As to how to fix this
problem, please refer to 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃𝑦𝑡ℎ𝑜𝑛.

https://en.wikipedia.org/wiki/Soundex
https://en.wikipedia.org/wiki/Soundex
https://docs.python.org/3/library/stdtypes.html

